

DATA SHEET CRP PROPULSORS

Better performance by sharing the load between two contra-rotating propellers

Steerprop contra-rotating propeller (CRP) technology allows vessels to operate in demanding conditions when high fuel efficiency is a critical factor – or if both high performance and smaller propellers are needed, such as in shallow rivers or when moving through ice. A double gear contact divides the propulsion load between the two propellers, and the opposite rotation direction recovers energy.

The propellers may be smaller for ice-class or reinforcement without compromising efficiency, or they can be larger and slow-turning to ensure outstanding efficiency. They can also be anything in between, allowing a tailored solution for a wide range of applications. Today's customized CRP propulsor is ideal for vessels requiring maneuverability and fuel-efficient operations, such as ferries, offshore vessels and merchant vessels. Steerprop propulsors always come standard with Steerprop Care condition monitoring.

Features	Main benefits				
Two sets of propellers, shafts and gears	Unsurpassed total efficiency Lightly loaded propellers Good cavitation performance Fuel consumption 5–10% lower than pod or pulling units Low underwater noise				
Robust mechanical construction	Highest possible reliability No electrical motor underwater Long lifetime roller bearings All auxiliaries are built as modular units and tested during FAT				
Well-planned serviceability and easy installation	Optimized modular structure and electrical motor inside hull for easy serviceability Long time between overhauls; planned docking interval of 5 years for replacement of seals and anodes Condition monitoring system enables trend follow-up for preventive maintenance Lubrication and seal systems built on the propulsor reduce external piping and large air coolers				

CRP SERIES

		SP 10 CRP	SP14 CRP	SP 20 CRP	SP 25 CRP	SP 35 CRP	SP 45 CRP	
Maximum power [kW]*		900	1250	1600	2000	2800	3500	
Input speed [rpm]		1000–2000	750–2000	750–1800	750–1800	750–1200	750–1200	
Dim	Z-DRIVE	Diesel o	r electric	Electric				
Prime mover -	LM	Electric, integrated						
Steering tyre	Z-DRIVE	Hydraulic	or electric	Electric				
Steering type	LM	Electric						
Maximum ice class*	* (FSICR)	None	1B	1C	1C	1A	1A	
Denverialet [4]	Z-DRIVE	8	13	17	24	38	50	
Dry weight [t] -	LM	10	17	18	28	43	58	
Oʻlura harra [1]	Z-DRIVE	820	1360	1730	2650	4550	4900	
	LM	770	1300	1630	2550	4400	4550	
Cooling water	Z-DRIVE	100	165	180	200	250	350	
demand 38 °C — [l/min]	LM**	120	150	210	235	280	350	
Installation options	Callation options Bolted, bottom-well cover or welded							

* Ice-class power impact is checked case by case We reserve the right to modify the information above at any time without notice.

** Value includes the motor
The LM model has a vertically integrated permanent magnet motor.

The Z-drive propulsor can be used for mechanical or hybrid propulsion systems.

TECHNICAL DRAWINGS AND DIMENSIONS

Z-drive

LM with integrated permanent magnet motor

		SP 10 CRP	SP 14 CRP	SP 20 CRP	SP 25 CRP	SP 35 CRP	SP 45 CRP		
Α	Z-DRIVE*	985	1140	NA	NA	NA	NA		
	Z-DRIVE**	485	620	617	720	723	900		
	LM	NA							
В	Z-DRIVE	1350	1200	1460	1180	1650	1820		
	LM	1500	1820	1920	2050	1650	1820		
с	Z-DRIVE	1670	1950	2000	2250	2750	2950		
	LM	1670	1950	2000	2250	2750	2950		
D	Z-DRIVE	2250	2650	3000	3500	4000	4350		
	LM	NA							
E	Z-DRIVE	1830	2075	2440	2930	3350	3580		
	LM	1830	2075	2440	2930	3350	3580		
-	FRONT PROPELLER	1800	2100	2400	2800	3200	3500		
F	AFT. PROPELLER	Approximately 80% of the front propeller's diameter							

** No clutch

We reserve the right to modify the information above at any time without notice.

SMALL SPACE REQUIREMENT

LM unit with integrated permanent magnet motor

Z-drive with horizontal motor

All auxiliary modules are preassembled and tested at our factory. Therefore, installation is quick and easy, minimizing risk and labor.

Steerprop assembly board (SAB): includes control cabinets, frequency converters for steering motors, brake resistors for electric steering, frequency converters for lubrication pumps. The entire unit is installed on vibration dampeners

- $\cdot\;$ Easy connection to the propulsor by means of a plug-in cable
- · Easy handling at the shipyard / during transport

Lubrication unit: one or two pumps depending on requirements, duplex filter, oil cooler, cooling water from the vessel's system

- · Electric motor-driven pressurized lubrication system
- Frequency converter-controlled pump circulates the lubrication oil through a cooling and filtering circuit

Shaft seal system:

- The propeller shaft has multiple radial-type lip seals with a secure blocking chamber
- The oil in the blocking chamber can be changed via the flushing line on the upper assembly
- · Compatible with US EPA VG2013 upon request

Customized scope of packages:

Through Steerprop's Ecosystem, we can deliver a larger scope of systems with specialized partners.